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Abstract 

The problem of dynamic deformation of the fairing under the action of an external distributed 

load is considered. The fairing is represented as a hemisphere connected to a cylinder. The 

mathematical model of the processes of forced vibrations of the structure is reduced to the 

consideration of a hyperbolic system of nonlinear differential equations of the theory of shells 

and curvilinear rods of the Timoshenko type. The problem is numerically solved by the grid-

characteristic method. Numerical results are obtained. 

Keywords: shell, stress, deflection, Timoshenko's theory of shells, hyperbolic differential 

equation, grid-characteristic method. 

 

1. Introduction 

Composite piecewise-homogeneous shell structures are widely used in various fields of the 

national economy and modern technology. The development of scientific and technological 

progress, the introduction of new technologies, and the use of explosive energy set new tasks for 

researchers to study the behavior of such structures under intense dynamic loads. Elements of 

energy pipelines and components of solid rocket boosters are also designed for the action of non-

stationary shock loads. 

Currently, the numerical modeling of real physical processes is increasingly used. This is 

primarily due to the fact that numerical modeling is many times more cost-effective than 

conducting real experiments. Additionally, in some cases, it is difficult to construct a physical 

model that accurately represents a real engineering object with certain operational and technical 

characteristics. The aim of the researches is to increase the mechanical strength of the 

constructions by enabling the manufacture of structures with predetermined properties through 

variations in geometric dimensions and mechanical properties of their components. 
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Algorithms and programs for calculating composite shell structures under the action of stationary 

and dynamic loads are presented in the handbook (Myachenkov & Grigoriev, 1981). The 

monograph (Naval et al., 1986) is devoted to the dynamic behavior of composite shells under 

non-stationary loads. The dynamic behavior of the reinforced shells of revolution, taking into 

account the discrete arrangement of ribs, is studied in the article (Lugovoi & Meish, 1992). In the 

paper (Shulga & Bogdanov, 2003) the axisymmetric nonlinear vibrations of conical shells are 

studied. Forced vibrations of a truncated elliptic conical shell under distributed impulsive load, 

deriving linear equations from Timoshenko's theory and developing a numerical algorithm to 

explore its dynamic behavior is examined in the study (Meish et al., 2020). Problems of dynamic 

behavior of reinforced ellipsoidal shells are addressed in the paper (Meish, 2005). In study 

(Meish & Kairov, 2005), the dynamic problems for discretely reinforced shells with initial 

deflections are numerically solved. The dynamic problem for a sandwich cylindrical shell under 

distributed nonstationary loading is solved with regard for the discreteness of the core in 

(Lugovoy et al., 2005). Nonlinear dynamic stability investigations for isotropic and composite 

cylindrical shells under pulsating axial loading are carried out through finite element in the paper 

(Rizzetto et al., 2019). In study (Wang et al., 2022), the method of finite elements for 

investigating the failure mechanisms of cylindrical shells under internal explosion shock waves 

is used. In the paper (Yang, 2023) the buckling problem of cylindrical shells under combined 

non-uniform axial compression and external pressure is examined. A comprehensive overview of 

the behavior of cylindrical shell structures under different loading conditions, including external 

pressure, axial compression, and bending moment is provided in the research work (Ganendra et 

al., 2023). 

However, the problem of studying the dynamic behavior of composite structures is far from 

being completely solved. Therefore, the development of analytical and numerical methods that 

allow to solve at least individual problems holds significant value. This underscores the 

relevance of developing techniques that enable conducting multiple numerical experiments to 

comprehensively study the dynamic behavior of composite structures. 

2. Method 

The dynamic deformation of a shell structure under the action of an external distributed load is 

considered. The structure under study is a fairing. It is represented as a hemisphere connected to 

a cylinder. The radius of the hemisphere is equal to R . The length of the cylinder and its radius 

are L  and R , respectively. The edge of the cylinder is rigidly restrained ( 0 wu ). 

The mathematical model of the processes of forced vibrations of the considered construction is 

reduced to the consideration of a hyperbolic system of nonlinear differential equations of the 

theory of shells and curvilinear rods of the Timoshenko type. 

According to Timoshenko's theory of shells, geometric relations for nonlinear symmetric 

deformation of the body take the following form (Vorob'ev et al., 1989): 
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2A  are the coefficients of the first quadratic form of the surface 

that are responsible for the geometric parameters of the shell; 
1u , 3u ,   are the components of 

the generalized displacement vector. 

The forces and moments are given by the following formulas: 
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 is the shear modulus in the plane constz  , 
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where 
1E , 

2E  are Young’s moduli in the directions 
1  and 

2 , respectively, h  is the thickness 

of the shell. 

The equations of motion have the following form: 
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where   is the shell density, h  is its thickness, iP  ( 3,1i ) are the components of the 

generalized load vector, uu 1 , wu 3 . 
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Equations (1)–(5) can be reduced to the following system of the second-order differential 

equations: 
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where ic  are the wave propagation speeds, ij , ij  are the coefficients that include geometric 

and physical parameters of the components, iF  are the designation of the right-hand sides of the 

equations. 

The system of second-order differential equations (6) can be solved by so-called grid-

characteristic method (Magomedov & Kholodov, 1988; Danylchenko et al., 2013). 

For numerical integration, at first it is necessary to find the equations of the characteristic 

directions (physical characteristics) and differential relations on them. A simple technique exists 

for this purpose, which involves defining the characteristic directions as those along which the 

values of the highest derivatives of the sought functions can be undefined, due to the potential 

for discontinuity. 
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which hold true for any direction, a system of nine equations is obtained. Solving this system 
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This second derivative is undefined if both determinants N  and M  are equal to zero. If 0M  

then expanding the determinant by Laplace's method yields: 
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Setting each of the expressions in the braces to zero results in two families of physical 

characteristics: 

ic
dt

dx
 . 

The obtained characteristics are called 
iC  and 

iC - characteristics. Usually, the quantities ic  are 

called the speeds. 

Taking into account that 0N , it can be obtained: 
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Assuming speed 
1c  is not equal to any other speed ic , Equation (7) yields that along the 

directions 1c
dt

dx
  the following relations hold 
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Equations (8) are called the characteristic equations along 1c
dt

dx
 . It can be proven by passing 

to the limit that Equations (8) hold even if the value of 1c  is equal to one or more ic . 

Analogously, the characteristic equations for the other speeds have been obtained: 
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Since only continuous iu  are considered, then dt
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  along any direction. 

Equations (6) are the second-order differential equations with respect to x  and t . Therefore, for 

each of the variables iu  two initial and two boundary conditions must be specified. The correct 
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initial conditions are the specification of all functions 
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 along the initial line 0t . 

Note that specifying 
x
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
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 along the initial line 0t  is equivalent to specifying iu  on 0t . 

Along each of the boundary lines 
1Xx   and 

2Xx   one boundary condition must be specified 

for each iu . The correct boundary condition would be to set all iu  on 
1Xx   and 

2Xx  . 

If the characteristic equations of a system of hyperbolic differential equations are known, then 

they can be integrated numerically. Only the case 
21 cc   will be considered. At first, to perform 

numerical computations, a grid of characteristic lines is constructed. Then, the characteristic 

equations and compatibility equations are written in the finite-difference form with respect to the 

values of the dependent variables at the nodal points of the grid. The obtained grid contains a lot 

of irregular nodal points for practical numerical calculations. For simplicity, only 

1C  and 

1C  

characteristics are used as the prime grid (Figure 1), where  icc max1  , and the values of the 

dependent variables are calculated only at the nodal points of this grid. 

 

Figure 1. Grid of characteristic directions 
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from previous calculations.  
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The sequence of calculations for determining the motion of elements in the composite structure 

is presented below. 

1. The necessary data defining the geometric and physical characteristics of the investigated 

structure are prepared. 

2. Assuming the initial state of the structure to be unperturbed, all unknown parameters are set to 

zero. 

3. Values of parameters at the boundary points are computed. The data on the boundary are 

defined using boundary conditions, and the values of unknowns are determined from 

relationships on characteristics that do not extend beyond the integration domain. 

4. The parameters of internal points for each region are calculated. If the required parameters are 

implicit functions, their values are found by the simple iteration method. 

5. The values of the parameters at the points of the contact line points are computed. Formally, 

the contact point can be considered as composed of two distinct points, one belonging to region 1 

and the other to region 2. The unknown parameters at this “formal” point are determined using 

interface conditions. 

The obtained values of the wave field parameters are used as the initial values for computing the 

values of the sought variables at the nodes of the grid domain for the next time step, starting 

from point 3. 

If the values of the displacement components at the nodes of the grid region are known, the 

stresses can be calculated using the relations between stresses and displacements. 

For the considered problem in Equations (1)–(4) it is accepted 11 A , RA 2
, 01 k , Rk 12   

for the cylindrical part and RA 1
, 

12 sin A , Rkk 121   for the spherical part. Nonlinear 

terms were not taken into account in Equations (1). 

 

3. Numerical results and its discussion 

Calculations were performed for the structure with the following geometric, physical and 

mechanical parameters: 02.0
R

h
, 5.0 RL  m, 10107 E  Pa, 3.0 . The load was taken 

in the form: 
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t  , 0c  is the speed of sound in air. 
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Figure 2 shows distribution of deflections at time 
13tt  . The numerical results (curve 2), 

obtained by the method presented in this article, are in agreement with those obtained in 

(Lugovoi et al., 2006) (curve 1) for the values of deflections 3u  ( 3uw  ) at time 
13tt  , i.e. after 

the wave has been reflected. Comparing the results has shown that there is a difference in the 

values of the studied quantities at several points, particularly at their maximum values. 

 

Figure 2. Distribution of deflections at time 
13tt   

Calculations have shown that, as a result of diffraction of the load wave in the contact area 

between the components of the structure, the quantities under study experience a jump. By 

varying the geometric and mechanical parameters, it is possible to smooth out these jumps under 

the specific loading conditions. Using a transition curve in the interface area between the 

components of the structure, ensuring a smooth change of curvature, it is possible to achieve a 

decrease in stress concentration simultaneously with a decrease in the amount of material 

required to create these structures. 
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